
Technical Report 1601
March 1993

(o4• ,Decomposition of
__ - •Large Sparse Symmetric

JUL2 93 . Systems for
i __j Parallel Computation,S~A

Part 2: Parallelization Tool
Roadmap

A. K. Kevorkian

wApov" ftw Wft rea.; fttrtIln Is ur!v**d.

93-16540
"A/H IHi/II//~ /j

Technical Report 1601
March 1993

Decomposition of Large Sparse
Symmetric Systems for

Parallel Computation
Part 2: Parallelization Tool Roadmap

A. K. Kevorkian

Acceqor For " }--

D I;,: ; .-j. i•
U .J , . . .

By......... IK~A .,.I

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5001

J. D. FONTANA, CAPT, USN R.T. SHEARER

Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

This report was sponsored by the Office of the Chief of Naval Research

under accession number DN302038, program element 0601152, project
number ZW62.

Released by Under authority of

A. K. Kevorkian J. A. Roese, Head

Code 7304 Signal and Information
Processing Division

ACKNOWLEDGMENT

This work was funded by the Naval Command, Control and Ocean

Surveillance Center RDT&E Division Independent Research program, as well as the

High Performance Computing Fellowship Program. The author gratefully
acknowledges both supports.

LH

EXECUTIVE SUMMARY

OBJECTIVE

Given any linear system of equations Mx = b in which M is a large sparse
symmetric matrix, provide a fully automated computer program for generating
computational tasks that can be processed independently of each other by the
different processors of a parallel architecture computer. Such an automated
parallelization tool is essential for the effective applications of parallel architecture
computers.

RESULTS

Wa have presented a detailed computer implementation of a combinatorial
algorithm developed in part 1 (Kevorkian, 1993) for decomposing a large sparse
symmetric system of equations Mx = b into independently solvable smaller tasks
that can be executed in parallel on different processors of a parallel architecture
computer. Also, we have presented a procedure that uses the output of the
computer program to generate a block bordered diagonal form of matrix M that is
well-suited for sparse block factorizations.

CONTENTS

EXECUTIVE SUMMARY ... i

1. INTRODUCTION .. 1

2. IMPLEMENTATION OF PARALLELIZATION TOOL ROADMAP 1

3. BLOCK BORDERED DIAGONAL FORMS USING ROADMAP 3

4. FUTURE W ORKS .. 14

5. CONCLUSION ... 14

6. REFERENCES ... 14

FIGURES

1. Procedure roadmap ... 5

2. Procedure sprsdata .. 6

3. Procedure search .. 7

4. Procedure dfs .. 8

5. Function cmponent .. 9

6. Procedure classify .. 10

7. Procedure cliques ... 11

8. Procedure maxclq ... 12

9. Procedure bbdf ... 13

III~o

1. INTRODUCTION

The solution of large sparse linear symmetric systems of equations of the type

Mx = b

forms the most compute-intensive part in several of the Navy's fundamental grand
challenge problems. These problems include ocean basin scale modeling, three-
dimensional modeling of ocean acoustic propagation, fluid flow simulations, tur-
bulent combustion, and structural design of navy vehicles, as well as linear and
nonlinear constrained optimization problems known as linear and nonlinear pro-
gramming. In most of these applications, there is significant parallelism hidden in
the structure of the original problem. Therefore, any progress toward the efficient
solution of a general grand challenge problem on a parallel architecture computer
will require advanced computational tools that can expl3it all hidden parallelism.

In this work we give a complete computer implementation of an algorithmic tooi
developed recently by Kevorkian (1993) for exploiting parallelism hidden in the
sparsity structure of large sparse symmetric matrices with regular and irregular
structures. The application of this automat6d parallelization tool to a general sparse
symmetric system of equations decomposes the original problem into inde-
pendently solvable smaller tasks for execution on different processors of a parallel
architecture computer.

This report is organized as follows. In section 2, we present a computer imple-
mentation of the parallelization tool, called "roadmap" (Kevorkian, 1993), using the
linear algebra package Matlab (MathWorks, 1990). In section 3, we present a
procedure that uses the program roadmap to generate a permutation matrix P such
that PMPT is a block bordered diagonal matrix satisfying all three properties of the
vertex partition computed in roadmap. In section 4, we discuss future works
pertaining to experimental results obtained from the application of roadmap to a
collection of test problems. Also, we discuss the development of a recursive version
of roadmap that can exploit parallelism not only in the original problem, but also in
all subsequent parts (Schur complements) that usually result from the solution of a
sparse system of equations by Gaussian elimination.

2. IMPLEMENTATION OF PARALLELIZATION TOOL ROADMAP

In this section we present a complete computer implementation of roadmap by
using the widely available linear algebra package Matlab (MathWorks, 1990).

The input to roadmap is an n-by-n structurally symmetric sparse matrix M = [mij]
with the data structure described as follows.

Suppose G = (V, E) denotes the undirected graph of the n-by-n matrix M. Then
the set V consists of n vertices v1 through vn, with vi representing row i of matrix M.
For convenience, let vi = i, for i = 1,...,n. Then we get adjGvi = { j I mii * 0 for all j * i},
and so the array ADJ(i) consists of the set of column indices of the nonzero off-
diagonal entries in row i of matrix M. Thus, the problem of representing the matrix M

by a sparse data structure is one of finding a compact way of storing and
referencing the n arrays ADJ(1) through ADJ(n). The sparse data structure we use
in roadmap was first introduced, implemented, and applied by Gustavson (1973).

Suppose we combine the n arrays ADJ(1) through ADJ(n) to form a single array

LADJ defined by

LADJ = [ADJ(1), ADJ(2), ... , ADJ(n)].

Also, let lADJ be an n+1 single array

IADJ = [IADJ(1), IADJ(2), ... , IADJ(n+1)]

with elements defined by
i-i

IADJ(i) =1+ _ DEG(j), i= 1,..., n+1.
j=1

Since DEG(i) = JADJ(i)J, the integers IADJ(i) and IADJ(i+1) -1 are pointers to the first
and last vertices of ADJ(i) on array LADJ, respectively, and so using standard
Matlab notation (MathWorks, 1990) we obtain the following two equalities:

ADJ(i) = LADJ(IADJ(i):IADJ(i+I) - 1),
and

DEG(i) = IADJ(i+I) - IADJ(i), i = 1, ... , n.

Thus the data structure for the zero-nonzero structure of matrix M is a pair of single
arrays (IADJ, LADJ), where IADJ consists of n+1 pointers and LADJ consists of 21EI
column indices. George and Liu (1981) refer to the pair of arrays (IADJ, LADJ) as
the adjacency structure pair of matrix M.

The entire roadmap program is given in figures 1 through 8. In writing this pro-
gram, our main objective was to establish a concise one-to-one correspondence
between the implementation and the high-level language used in Kevorkian (1993)
so that all theoretical parts of the work can be conveniently traced and studied. All
parameters, variables and arrays used in the roadmap are described in detail in
Kevorkian (1993).

The procedure "sprsdata" called in roadmap queries the user for the dimension
n of matrix M and requires from the user the adjacency structure pair (IADJ, LADJ)
of M. Procedure sprsdata also computes the single array DEG and monitors the
integrity of the input data by checking the correctness of three relations. These are
as follows:

IIADJI = n+1,
ILADJI = IADJ(IIADJI) - 1,

LADJ(i) < n, for all i < fLADJI.

2

If any of these three relations is violated, the program halts and prints the message

"check data." The program also halts if the following equality holds

ILADJI = n x (n -1)

since G is a clique in this a case; and so no sparsity will exist in G.

Procedure "search" called in roadmap computes the set of vertices S. If the set
S is nonempty, then roadmap calls procedure "dfs" to compute the connected com-
ponents of the induced subgraph G(V-S). Otherwise, roadmap calls procedure
"1"cliques" to compute independent cliques in the original graph G.

The procedure "classify" called in roadmap categorizes the connected compo-
nents of G(V-S) into cliques and noncliques using parameters computed in dfs. If a
connected component G(U) is a clique, then procedure classify uses results estab-
lished in Kevorkian (1993) to classify G(U) into one of four distinct types of cliques.
If G(U) is not a clique, then procedure classify calls procedure cliques to compute
independent cliques in the nonclique connected component G(U).

The clique connected components of induced subgraph G(V-S) combined with
the independent cliques computed in each of the nonclique connected compo-
nents of G(V-S) form the independently solvable smaller tasks that can be exe-
cuted in parallel on different processors of a parallel architecture computer.

3. BLOCK BORDERED DIAGONAL FORMS USING ROADMAP

Procedure bbdf given in figure 9 uses the program roadmap to generate a
permutation matrix P such that PMPT is a block bordered diagonal matrix satisfying
all three properties of the vertex partition rn* = (VI, V2, ... , Vr, S*). These properties
are briefly stated in procedure roadmap shown in figure 1, and covered in more
depth in Kevorkian (1993). By the first two properties of the vertex partition, PMPT is
an (r+l)-by-(r+l) block bordered diagonal matrix such that each of the leading r
diagonal blocks is a full matrix. By the third property, every principal submatrix in M
that corresponds to an interior clique in the graph of M is a diagonal block in PMPT.
In part 1 of this work (Kevorkian, 1993), we have shown that the symbolic
factorization of a matrix corresponding to an interior clique does not produce any
fill-in. Block bordered diagonal forms computed by the program roadmap are thus
well-suited for sparse block factorizations.

The procedure bbdf consists of three distinct parts. The first part uses the
adjacency structure pair (IADJ, LADJ) to generate a Boolean form of matrix M. The
second part uses the array QUEUE and properties of arrays SN and VC to compute
the vertex ordering c. Permuting the rows of M in the sequence given by a produces
the block bordered diagonal form of matrix M. The third and last part of procedure
bbdf uses the signs of the elements placed on IQUEUE to generate an r+1 array
such that the ith element is a pointer to the first row of the ith diagonal block in
PMPT. While modifying the array IQUEUE in procedure bbdf, we make sure that the
pointers to the starting vertices of independent cliques computed in cliques retain
their original negative signs. This way we are able to use the array TYPE computed

:3

in roadmap to relate each diagonal block in PMPT to the type of clique it is
associated with in G.

The first two parts of procedure bbdf are straightforward and easy to follow. The
third part is more complicated, requiring the following property of array IQUEUE for
correctness.

Lemma 1. Let S be the set of vertices computed in procedure search. Let i and j
be any two consecutive elements on the array IQUEUE at the completion of
roadmap. Then the set of vertices on QUEUE(IiI:IjI-1) is a subset of the vertex set
S*- S if and only if i < 0 and j > O.

Proof. Let i and j be any two consecutive elements on array IQUEUE. Then one
of the following two cases must hold.

Case 1. i > 0. Then by the construction of procedure dfs, there is a connected
component G(U) of G(V-S) such that the vertex v = QUEUE(i) is the starting vertex
of the connected component G(U) computed in dfs. Suppose j > 0. Then by the last
statement in procedure maxclq, it follows that no call was made to procedure
cliques in classify at the completion of the connected component G(U). This means
that the connected component G(U) is a clique, and so no part of the set of vertices
on QUEUE(i:j-1) is in the set S*-S. Now suppose j < 0. Since i > 0, the integer j
must be the first element added to array IQUEUE in procedure maxclq at the
completion of connected component G(U). Thus G(U) is not a clique and,
furthermore, the vertices on QUEUE(i:ijI-1) comprise the vertex set in the first
independent clique computed by procedure cliques in G(U). As a result, no part of
the set of vertices on QUEUE(i:1il-1) can be in the set S*-S. Hence for any i > 0 and
j > 0 or any i > 0 and j < 0, no part of the set of vertices on QUEUE(i:IjI-1) is in the
set S*-S.

Case 2. i < 0. Assume j < 0. Then by the construction of procedure cliques, the
vertex v = QUEUE(IiI) is the starting vertex of an independent clique computed by
cliques in some nonclique connected component G(U) of G(V-S), whereas the
vertex w = QUEUE(Ijl) is either the staring vertex of another independent clique in
G(U) or is the starting vertex of a separator computed by cliques in G(U). Therefore
for the case where j < 0, the vertices on QUEUE(IiI:IjI-1) comprise the vertex set in
an independent clique computed by procedure cliques in G(U) and qo no part of
the set of vertices on QUEUE(IiI:IjI-1) can be in the set S*-S. Finally, suppose j > 0.
Then v is the starting vertex of the separator computed by cliques in G(U), which
means that the set of vertices on QUEUE(Iil:j-1) is in the set S*-S.

This completes the proof.

4

% procedure roadmap

% Given a sparse symmetric matrix M, roadmap computes in the undirected graph *

% G = (V, E) of M a vertex partition n* = (VI, V2 ... , Vr, S*) satisfying the following *

% three properties: *
% (a) for any two distinct elements Vi and Vi of the partition, no vertex in Vi is *
% adjacent to a vertex in V, *
% (b) every element Vi of the partition induces a clique, *
% (c) interior of every clique in G is an element of the partition.
% Program roadmap computes the vertex partition ri- in linear time. *

global IADJ LADJ LEAF NGU RANKE SN TEST U VC
sprsdata % user provided input (n, IADJ and LADJ)
QUEUE % store connected components of G(V-S)
IQUEUE =0; % pointers to "roots" and "end" of QUEUE
TYPE = [; % classify "type" of connected component
LEAF = 0; % pointer to last vertex placed on QUEUE
VC = zeros(1 ,n); % mark all vertices "new"
SN = zeros(1 ,n); % initialize separator numbers to zero
TEST = zeros(1 ,n); % initialize Boolean array TEST to zero
search % comoute the set S = { v I SN(v) = 1)
if any(SN == 1) % if S is nonempty then

dfs % compute connected components
else % else

ROOT 1; % pointer to root vertex of V
LEAF = n; % pointer to end vertex of V
QUEUE = [ROOT:LEAF]; % place entire vertex set V on QUEUE
IQUEUE [ROOT]; % pointer to root vertex on QUEUE
TYPE = [0]; % G is a regular graph (& not a clique)
cliques % compute independent cliques of G

end % end
IQUEUE = [IQUEUE, LEAF+1]; % pointer to end of QUEUE

Figure 1. Procedure roadmap.

5

% procedure sprsdata

% This p,.cedure performs the following four tasks: *

% (a) queries the user for size of matrix (n); *

% (b) requires from user the adjacency structure pair (IADJ, LADJ) of matrix; *

% (c) tests correctness of input data; *

% (d) computes the single array DEG (degrees of vertices).

% query user for size of matrix (n)
n = input('Enter n (if n <= 1, program quits): ');
if n <= 1, break, end
end

% provide adjacency structure pair (IADJ, LADJ)
if n == 21

% Illustrative example used in Kevorkian (1993)
IADJ =[1 6 8 11 14 23 27 32 41 44 47 51 55 61 67 70 75 82 86 90 93 97];
LADJ=[5781617 13 17 41420 31320 16781416171819];
LADJ=[LADJ, 5141819 1581617 15711 1213161721 101520];
LADJ=[LADJ, 91415 8121321 811 17 21 24811 15 21];
LADJ=[LADJ, 356101819 91013 157817];
LADJ=[LADJ, 1 25781216 561419 561418 349 811 1213];

end
% test correctness of input data

RANKI = length(IADJ);
RANKL = length(LADJ);
if RANKI -= n+1

disp(' IADJ does not have correct length. Check data.');
break, end

end
if RANKL -= IADJ(RANKI)-1

riisp(' LADJ does not have correct length. Check data.');
break, end

end
if any(LADJ > n)

disp(' LADJ contains a column index > n. Check data.');
break, end

end
if RANKL == n*(n-1)

disp(' Off-diagonal part of M is full and so G is a clique.');
break, end

end
% compute degrees of vertices

DEG = IADJ(2:n+I)-IADJ(1 :n);

Figure 2. Procedure sprsdata.

6

% procedure search
a%

% This procedure computes in G = (V, E) a set of vertices S defined by
% *

% S = { v I there exists in E an edge (v, w) with DEG(v) > DEG(w)}. *

% The set S has the property that every interior clique in G is a connected *

% component of induced subgraph G(V-S); Corollary 3.1 in Kevorkian (1993). *

for v = 1 :n-1 % for each vertex v in V - {n} do
VC(v) =1; % mark vertex v "old"
for w = LADJ(IADJ(v):IADJ(v+I)-1) % for all w adjacent to v do

if VC(w) == 0 % if w is marked "new" then
if DEG(v) -= DEG(w) % if DEG(v) # DEG(w) then

if DEG(v) < DEG(w) % if DEG(v) < DEG(w) then
SN(w) =1; % w is in S

else % else
SN(v) =1; % v is in S

end % end
end % end

end % end
end % end

end % end
VC = zeros(1 ,n); % mark all vertices "new"

Figure 3. Procedure search.

7

% procedure dfs

% This procedure computes all connected components of induced subgraph *

% G(V-S). We use G(U) to denote a connected component computed in dfs. *

for v = 1 :n % for all v in V do
if SN(v) == 0 % if v is in V-S then

if VC(v) == 0 % if v is marked "new" then
VC(v) = 1 % mark v "old"
QUEUE = [QUEUE,v]; % v is the root vertex of G(U)
LEAF = LEAF+1; % pointer to end vertex
ROOT = LEAF; % pointer to root vertex
IQUEUE = [IQUEUE, ROOT]; % add root pointer to IQUEUE
RANKE - 0; % count edges visited in dfs
NGU = [; % neighborhood of U in G
cmponent(v) % compute G(U)
RANKU = LEAF-ROOT+1; % compute size of U
RANKN = length(NGU); % compute size of NGU
TEST(NGU) = zeros(1,RANKN); % update Boolean array TEST
classify % identify "type" of component

end % end
end % erd

end % end

Figure 4. Procedure dfs.

8

i I

% fiunction cmponent(v)

% This function computes neighborhood NGU of U while computing G(U) *

function cmponent(v) % declare cmponent(v) as function file
for w = LADJ(IADJ(v):IADJ(v+I)-1) % for all w adjacent to v do

if SN(w) == 0 % if w is in V-S then
RANKE = RANKE+1; % account for visited edge (v,w)
if VC(w) == 0 % if w is marked "new" then

VC(w) = 1; % mark w "old"
QUEUE = [QUEUE, w]; % add w to QUEUE
LEAF = LEAF+1; % update pointer to end vertex
cmponent(w) % call cmponent(w)

end % end
else % else

if TEST(w) == 0 % if w is not on NGU then
NGU = [NGU, w]; % add w to NGU
TEST(w) = 1; % mark w as vertex on NGU

end % end
end % end

end % end

Figure 5. Function cmponent.

9

% procedure classify
%

% This procedure categorizes the connected components of G(V-S) into cliques *

% and noncliques using the algebraic relation RANKE = RANKU*(RANKU-1). *

% Subsequently, all clique connected components in G(V-S) are classified into *
% the four types of cliques Cl through C4 using Corollaries 4.2 and 4.3 in *
% Kevorkian (1993). *

if RANKE == RANKU*(RANKU-1) % if G(U) is a clique then
if RANKN == 1 % if Cor. 4.2 holds then

TYPE = [TYPE, 1]; % G(U) is an interior clique
else % else

R = RANKN+RANKU-1; % compute integer R
if any(DEG(QUEUE(ROOT:LEAF)) ~= R) % if Cor. 4.3 does not hold

TYPE = [TYPE, 3]; % G(U) is not an si clique
else % else

TYPE = [TYPE, -2]; % G(U) is an si clique
end % end

end % end
else % else

TYPE = [TYPE, 0]; % G(U) is not a clique
VC(QUEUE(ROOT:LEAF))=zeros(1,RANKU); % mark vertices in G(U) "new"
cliques % compute ind. cliques in G(U)

end % end

Figure 6. Procedure classify.

10

% procedure cliques

% This procedure computes in G(U) independent cliques G(U1), G(U 2) ,... , and *
% their neighborhoods N(Uj), N(U2) ,... in G(U) such that *

% G(Uj) is maximal in G(U), *
% G(U2) is maximal in G(U - U1 - N(U1)), *
% G(U 3) is maximal in G(U - U1 - U2 - N(Uj) - N(U 2)), *
% and so forth. The sets U1, U2 , ... , are placed on array CLQS in that order, *
% while all neighborhoods are placed on array NBRS. At the completion of *
% cliques the vertex set U on QUEUE is replaced by the array [CLQS,NBRS]. *

CLQS =[; % stores independent cliques
NBRS = [; % stores neighborhoods of ind. cliques
CLQROOT = ROOT; % pointers to ind. cliques on CLQS
TAIL= 0; % pointer to last vertex on CLQS
for v = QUEUE(ROOT:LEAF) % for each vertex v in G(U) do

if VC(v) == 0 % if v is marked "new" then
VC(v) = 1; % mark v "old"
ADJCNT = [%; adj(v) in G(U-CLQS-NBRS)
maxclq % compute a maximal clique

end % end
end % end
QUEUE(ROOT:LEAF) = [CLQS, NBRS]; % replace U on QUEUE by [CLQS,NBRS]

Figure 7. Procedure cliques.

11

% procedure maxclq

% This procedure computes in induced subgraph G(U-CLQS-NBRS) a maximal *

% clique G(C) with starting vertex v (occasionally called the root vertex). *

for w = LADJ(IADJ(v):IADJ(v+I)-I) % for all w adjacent to v do
if SN(w) == 0 % if w is on U but not on NBRS then

if VC(w) == 0 % if w is marked "new" then
ADJCNT = [ADJCNT, w]; % add w to ADJCNT

else % else
NBRS = [NBRS, v]; % reject v as starting vertex
SN(v) = 1; % avoid duplicates of v
return % return to cliques

end % end
end % end

end % end
CLQS = [CLQS, v]; % C = [v]; (v is starting vertex of G(C))
TEST(v) = 1; % set TEST(v) = 1
RANKC= 1; % RANKC = ICI
for u = ADJCNT % for each vertex u on ADJCNT do

VC(u) = 1; % mark u "old"
w = LADJ(IADJ(u):IADJ(u+I)-1); % w = ADJ(u)
COUNT = length(find(TEST(w) =- 1)); % COUNT = IADJ(u) n CI
if COUNT -= RANKC % if u is adjacent to all w in C then

CLQS =[CLQS, u]; % C = [C, u]
TEST(u) = 1; % set TEST(u) = 1
RANKC = RANKC+1; % update size of C

else % else
NBRS = [NBRS, u]; % u is in neighborhood of C
SN(u) = 1; % avoid duplicates of u

end % end
end % end
HEAD = TAIL+1; % pointer to C(1) on CLQS
TAIL = TAIL+RANKC; % pointer to c(ICI) on CLOS
TEST(CLQS(HEAD:TAIL))=zeros(1,RANKC); % reset TEST to zero
CLQROOT = CLQROOT+RANKC; % pointer to next starting vertex
IQUEUE = [IQUEUE, -CLOROOT]; % add pointer (negated) to IQUEUE

Figure 8. Procedure maxclq.

12

% procedure bbdf

% This procedure uses the output of program roadmap to generate a permutation *
% matrix P such that PMPT is a block bordered diagonal matrix satisfying all three *
% properties of vertex partition n* = (VI, V2 , , Vr, S*). *

% % use (IADJ, LADJ) to compute M
M = zeros(n,n); % create an n by n zero matrix M
for v =1 :n % for all v in V do

M(v,v) = 1; % set M(v,v) = 1
w = LADJ(IADJ(v):IADJ(v+1)-I); % w = vertices adjacent to v
M(v,w) = 1; % set M(v,w) = 1

end % end
% % use array QUEUE to compute P
S = QUEUE(find(SN(QUEUE) == 1); % compute bordered part on QUEUE
QUEUE = QUEUE(find(SN(QUEUE) ==0)); % compute block diagonal part
QUEUE = [QUEUE,S, find(SN==l & VC==0)]; % vertex ordering a (placed on QUEUE)
M = M(QUEUE, QUEUE); % block bordered diagonal form of M
% % modify array IQUEUE
if length(S) > 0 % if ISI > 0 then

SUM = 0; % sum sizes of bordered parts
k =2; % pointer for elements on IQUEUE
i= IQUEUE(2); % second element on IQUEUE
for j = IQUEUE(3:Iength(IQUEUE)) % for j = IQUEUE(3:IIQUEUEJ) do

if i <0 &j>0 % ifi < 0 and j> 0then
SUM = SUM+i+j; % update SUM

else % else
IQUEUE(k) = i-sign(i)*SUM; % update IQUEUE
k = k+1; % increment k

end % end
i =j; % i = jth element on IQUEUE

end % end
end % end

Figure 9. Procedure bbdf.

13

4. FUTURE WORKS

Experimental results obtained from the application of roadmap to a standard set
of test problems including the Harwell-Boeing collection and a set of matrices
arising from linear and nonlinear programming optimization problems will be
reported in Kevorkian (in preparation-b).

Also, we are currently working on an extension of roadmap (Kevorkian, in
preparation-a) that exploits parallelism in the original problem as well as sub-
sequent Schur complements until no further parallelism remains to exploit. Such a
recursive version of roadmap will be ideally suited for problems in which the
original matrix and the Schur complement of the pivot block selected by roadmap
are very large sparse matrices. Large sparse problems with large Schur com-
plements are frequently encountered in linear and nonlinear programming opti-
mization problems (Kevorkian, 1993).

5. CONCLUSION

We have presented a detailed computer implementation of a linear-time paral-
lelization tool that automatically decomposes a large arbitrary sparse symmetric
system of equations into independently solvable smaller tasks for execution on
different processors of a parallel architecture computer.

6. REFERENCES

George, A., and J. W-H Liu. 1981. Computer Solution of Large Sparse Positive
Definite Systems, Prentice-Hall, Inc., Englewood Cliffs, NJ.

Gustavson, F. G. 1973. "Some basic techniques for solving sparse systems of
linear equations," in Sparse Matrices and Their Applications, D. Rose and
R. Willoughby, Eds., Plenum Press, NY, pp. 41-52.

Kevorkian, A. K. 1993 (Mar). "Decomposition of large sparse symmetric systems for
parallel computation. Part 1. Theoretical Foundations," NCCOSC/NRaD Technical
Report TR1 572.

Kevorkian, A. K. (In preparation-a). "Decomposition of large sparse symmetric
systems for parallel computation. Part 3. Recursive Version of Parallelization Tool
Roadmap," NCCOSC/NRaD Technical Report in preparation.

Kevorkian, A. K. (In preparation-b). "Decomposition of large sparse symmetric
systems for parallel computation. Part 4. Experimental Results Using Parallelization
Tool Roadmap," NCCOSC/NRaD Technical Report in preparation.

The MathWorks. 1990. Pro-Matlab User's Guide, South Natick, MA.

14

REPOT DCUMNTATON AGEForm Approved
REPOT DOUMENATIO PAG _T OMB No. 0704-0188

Public reporting burden for this collection of Information Is estimated to average 1 Ihour per response Inciuding the time for revswing Instructions. searching existing data sources, gathering and
maintaining the data needed. and completing and reviewing the collection of Inlormalion. Send coiments regarding this burden estimate orany oftheraspect of this ollection ot Informatlon. Including
suggestlons for reducingthis burden. toWashington Headquarters Services. Directorate for Infornallon Operations and Reports. 1215JelterSon Davis Highway. Sunte 1204. Arlington. VA 22202-4302.
and to the Oftie of Man~agement and Budget. Paperworkr Reduction Projed (0704-0188). Washington, DC 20603
1. AGENCY USE ONLY (.eve am. 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

March 1993 Final

4 TITLE AND SUBTaM.E 5 FUNDING NUMBERS

DECOMPOSITION OF LARGE SPARSE SYMMETRIC SYSTEMS FOR AN: DN302038
PARALLEL COMPUTATION PE: 0601152N
Part 2: Parallelization Tool Roadmap PROJ: ZW62

6. AUTHOR(S)

A. K. Kevorkian

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Command, Control and Ocean Surveillance Center (NCCOSC)

RDT&E Division TR 1601
San Diego, CA 92152-5001

9. SPONSORiNG/WMONITORING AGENCY NAME(S) AND ADORESS(ES) 10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of the Chief of Naval Research
OCNR-10P
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUtTION CODE

Approved for public release; distributikon is unlimited.

13 ABSTRACT (Magmmn 2W0 veAd)

In this report we give a complete computer implementation of an automated algorithmic tool for exploiting the
parallelism hidden in the sparsity structure of large symmetric matrices with regular and irregular structures. With this
parallelization tool, large sparse symmetric systems of equations are automatically decomposed into independently solvable
smaller tasks that can be executed in parallel on different processors of a parallel architecture computer.

14 SUBJECT TERMS 15 NUMBER OF PAGES

cliques fill-in parallel computation 23

separators simplicial vertices symbolic factorization @ PRCE COOE
vertex partition

I?. SECURITY CLASSIFICATION 18. SECURTY CLASSIFICATION 1Q SECURITY CLASSIFICATION 20 UMITATION OF ABSTRACT
OF REPORT OF THI.S PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS REPORT

NSN 7640,01,26Jr00 UxWd fonm 2W (FRONT)

UNCLASSIFIED

21a. NAME OF RESPONSIBLE INDIVIDUAL 21b. TELEPHONE (Ilu•eArea Code) 21c. OFFICE SYMBOL

A. K. Kevorkian (619) 553-2058 Code 7304

mmN 7504001-280-600 OnAM form 2n s (C•A

UNCLASSIFED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 013 P. M. Reeves (1)
Code 014 K. J. Campbell (1)
Code 0141 A. Gordon (1)
Code 02902 J. M. Baird (1)
Code 0292 G. C. Pennoyer (1)
Code 402 R. A. Wasilausky (1)
Code 421 D. L. Conwell (1)
Code 423 J. P. Schill (1)
Code 542 F. P. Snyder (1)
Code 5701 L. A. Parnell (1)
Code 70 R. E. Shutters (1)
Code 702 D. A. Hanna (1)
Code 73 J. A. Roese (1)
Code 7304 A. K. Kevorkian (100)
Code 731 W.G. Thomson (1)
Code 7601 K. N. Bromley (1)
Code 78 R. H. Hearn (1)
Code 782 R. Dukelow (1)
Code 804 J. W. Rockway (1)
Code 943 M. R. Blackburn (1)
Code 961 Archive/Stock (6)
Code 964B Library (2)

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research and Development
Information Center (NARDIC)

Washington, DC 20360-5000

GIDEP Operations Center
Corona, CA 91718-8000

NCCOSC Division Detachment
Warminster, PA 18974-5000

Office of Naval Research
Arlington, VA 22217-5000

Defense Advanced Research Projects Agency
Arlington, VA 22203-1714 (2)

